[29.07] Вебинар «Интерактивные технологии на уроках: современные инструменты и сервисы» Подтвердить участие→
Конкурс разработок «Пять с плюсом» июль 2021
Добавляйте свои материалы в библиотеку и получайте ценные подарки
Конкурс проводится с 1 июля по 31 июля

Контрольно- измерительные материалы по геометрии 8

Примерные контрольные работы по геометрии по УМК Л.С. Атанасяна Контрольные работы представлены в различных вариантах (отдельные варианты для более подготовленных учащихся ) оценка «5» - правильное выполнение двух задач; (3 задание на дополнительную оценку) Оценка «4» - имеются вычислительные ошибки, с их учетом дальнейшее решение правильное; Оценка «3» - решение двух задач неполное, есть вычислительные ошибки; Оценка «2» - нет решения ни одной задачи.
Просмотр
содержимого документа

МУНИЦИПАЛЬНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ

УЧРЕЖДЕНИЕ «СРЕДНЯЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ

ШКОЛА С.БЕРЕЗОВО ПУГАЧЕВСКОГО РАЙОНА

САРАТОВСКОЙ ОБЛАСТИ»

 

 

 

«Рассмотрено»

Руководитель МО

_____ /__________ /

                ФИО

Протокол №____от

«__» ______ 20__г.

 

 

«Согласовано»

Заместитель директора по УВР МОУ СОШ  с.Березово

_____ /_________/

                ФИО

«__» ______ 20__г.

 

«Утверждено»

Директор МОУ СОШ с.Березово

_____ /________/

                ФИО

Приказ №___ от

«___» ______ 20__г.

 

 

 

 

 

 

Контрольно-измерительный материал

по геометрии в 8 классе

на 2018-2019 учебный год

 

 

 

                                                             

Рассмотрено на заседании

педагогического совета

протокол № __

«      »_______20     г.

 

 

 

 

 

 

 

 

 

Примерные контрольные работы по геометрии по УМК Л.С. Атанасяна

Контрольные работы представлены в  различных вариантах  (отдельные варианты для более подготовленных учащихся )

оценка «5» - правильное выполнение двух задач; (3 задание на дополнительную оценку)

Оценка «4»  - имеются вычислительные ошибки, с их учетом дальнейшее решение правильное;

Оценка «3»  - решение двух  задач  неполное, есть вычислительные ошибки;

Оценка «2» -  нет решения ни одной задачи.

 

Тематическое планирование учебного материала по геометрии в 8 классе

(2 часа в неделю, всего 68 часов)

 

№ п/п

ТЕМА

Контрольные работы

 

1

Четырехугольники

Контрольная работа №1 «Четырехугольники»

2

Площадь

Контрольная работа №2 «Площадь»

 

3

Подобные треугольники

Контрольная работа №3 «Подобные треугольники. Соотношения между сторонами и углами прямоугольного треугольника»

4

Окружность

Контрольная работа №4 «Окружность»

 

5

Повторение

Контрольная работа №5 «Итоговая контрольная работа за курс 7 класса»

 

 

 

 

 

 

 

 

 

 

 

 

 

КОНТРОЛЬНАЯ РАБОТА № 1

Цель: проверить знания, умения и навыки учащихся по усвоению и применению изученного материала.

Вариант I

1. Диагонали прямоугольника АВСD пересекаются в точке О. Найдите угол между диагоналями, если АВО = 30°.

2. В параллелограмме KМNP проведена биссектриса угла МKР, которая пересекает сторону MN в точке Е.

а) Докажите, что треугольник KМЕ равнобедренный.

б) Найдите сторону , если МЕ = 10 см, а периметр параллелограмма равен 52 см.

Вариант II

1. Диагонали ромба KМNP пересекаются в точке О. Найдите углы треугольника KОМ, если угол МNP равен 80°.

2. На  стороне  ВС  параллелограмма  АВСD  взята  точка  М  так,  что АВ = ВМ.

а) Докажите, что АМ – биссектриса угла ВАD.

б) Найдите периметр параллелограмма, если СD = 8 см, СМ = 4 см.

Вариант III

1. Через вершину с прямоугольника АВСD проведена прямая, параллельная диагонали ВD и пересекающая прямую АВ в точке М. Через точку М проведена прямая, параллельная диагонали АС и пересекающая прямую ВС  в  точке  N.  Найдите периметр четырехугольника АСМN, если диагональ ВD равна 8 см.

2. Биссектрисы углов А и D параллелограмма АВСD пересекаются в точке М, лежащей на стороне ВС. Луч пересекает прямую АВ в точке N. Найдите периметр параллелограмма АВСD, если АN = 10 см.

 

 

 

 

 

 

 

 

 

КОНТРОЛЬНАЯ РАБОТА № 2

Цель: проверить знания, умения и навыки учащихся решать задачи по теме «Площадь. Теорема Пифагора».

Вариант I

1. Смежные стороны параллелограмма равны 32 см и 26 см, а один из его углов равен 150°. Найдите площадь параллелограмма.

2. Площадь  прямоугольной  трапеции  равна  120 см2,  а  ее  высота равна 8 см. Найдите все стороны трапеции, если одно из оснований больше другого на 6 см.

3. На стороне АС данного треугольника АВС постройте точку D так, чтобы площадь треугольника АВD составила одну треть площади треугольника АВС.

Вариант II

1. Одна  из  диагоналей  параллелограмма  является  его высотой и равна 9 см. Найдите стороны этого параллелограмма, если его площадь равна 108 см2.

2. Найдите  площадь  трапеции  АВСD  с  основаниями  АD и ВС, если АВ = 12 см, ВС = 14 см, АD = 30 см, В = 150°.

3. На продолжении стороны KN данного треугольника KМN постройте точку Р так, чтобы площадь треугольника NMP была в два раза меньше площади треугольника KМN.

Вариант III
(для более подготовленных учащихся)

1. Стороны параллелограмма равны 12 см и 8 см, а угол между высотами, проведенными из вершины тупого угла, равен 30°. Найдите площадь параллелограмма.

2. Середина М боковой стороны CD трапеции АВСD соединена отрезками с вершинами А и В. Докажите, что площадь треугольника АВМ в два раза меньше площади данной трапеции.

3. Точки А1, В1, С1 лежат соответственно на сторонах ВС, АС, АВ треугольника АВС, причем АВ1 = AC, CA1 = CB, BC1 = BA. Найдите площадь треугольника А1В1С1, если площадь треугольника АВС равна 27 см2.

 

 

 

 

 

 

КОНТРОЛЬНАЯ РАБОТА № 3

Цели: проверить знания, умения и навыки учащихся по усвоению и применению изученного материала.

Вариант I

1. На рисунке 1 АВ || СD. а) Докажите, что АО : ОС = ВО : ОD. б) Найдите АВ, если ОD = 15 см, ОВ = 9 см, СD = 25 см.

2. Найдите  отношение  площадей  треугольников  АВС  и  KMN,  если АВ = 8 см, ВС = 12 см, АС = 16 см, KM = 10 cм, MN = 15 см, NK = 20 см.

Вариант II

1. На рисунке 2 MN || АС. а) Докажите, что АВ · BN = · BM. б) Найдите MN, если AM = 6 см, ВM = 8 см, АС = 21 см.

2. Даны стороны треугольников PQR и АВС: PQ = 16 см, QR = 20 см, PR = 28 см и АВ = 12 cм, ВС = 15 см, АС = 21 см. Найдите отношение площадей этих треугольников.

Вариант III
(для более подготовленных учащихся)

1. Докажите, что прямая, проведенная через середины оснований трапеции, проходит через точку пересечения диагоналей трапеции и точку пересечения продолжения боковых сторон.

2. Даны отрезок АВ и параллельная ему прямая а. Воспользовавшись утверждением, доказанным в задаче 1, разделите отрезок АВ пополам при помощи одной линейки.

              

Рис. 1                                                             Рис. 2

 

 

 

 

 

 

 

Контрольная работа № 4

Цель: проверить знания и умения учащихся в решении задач и применении изученного материала.

Вариант I

1. В прямоугольном треугольнике АВС А = 90°, АВ = 20 см; высота АD = 12 см. Найдите АС и cos C.

2. Диагональ  ВD  параллелограмма  АВСD  перпендикулярна  к  стороне  АD.  Найдите  площадь  параллелограмма  АВСD,  если  АВ  =  12  см,
А = 41°.

Вариант II

1. Высота ВD прямоугольного треугольника АВС равна 24 см и отсекает от гипотенузы АС отрезок , равный 18 см. Найдите АВ и соs A.

2. Диагональ АС прямоугольника АВСD равна 3 см и составляет со стороной АD угол 37°. Найдите площадь прямоугольника АВСD.

Вариант III
(для более подготовленных учащихся)

1. Диагональ АС равнобедренной трапеции АВСD перпендикулярна к боковой стороне СD. Найдите площадь трапеции, если ее основания равны 10 см и 8 см.

2. Найдите отношение высот BN и AM равнобедренного треугольника АВС, в котором угол при основании ВС равен α.

 

 

 

 

 

 

 

 

 

 

 

 

КОНТРОЛЬНАЯ РАБОТА № 5

Цель: выяснить степень усвоения учащимися изученного материала.

Вариант I

1. Через точку А окружности проведены диаметр АС и две хорды АВ и АD, равные радиусу этой окружности. Найдите углы четырехугольника АВСD и градусные меры дуг АВ, ВС, СD, АD.

2. Основание равнобедренного треугольника равно 18 см, а боковая сторона равна 15 см. Найдите радиусы вписанной в треугольник и описанной около треугольника окружностей.

Вариант II

1. Отрезок ВD – диаметр окружности с центром О. Хорда АС делит пополам радиус ОВ и перпендикулярна к нему. Найдите углы четырехугольника АВСD и градусные меры дуг АВ, ВС, СD, АD.

2. Высота, проведенная к основанию равнобедренного треугольника, равна 9 см, а само основание равно 24 см. Найдите радиусы вписанной в треугольник и описанной около треугольника окружностей.

Вариант III
(для более подготовленных учащихся)

1. МА и МВ – секущие, АС и ВД – хорды окружности с центром О. Докажите, что АОВ = АKВ + АМВ.

2. Площадь равнобедренной трапеции АВСD с основаниями ВС и АD, описанной около окружности с центром О и радиусом 3 см, равна 60 см2. Найдите радиус окружности, описанной около треугольника ОСD.

 

 

 

 

 

 

 

 

9 класс
Контрольная работа № 1

Цели: проверить знания, умения и навыки учащихся по усвоению и применению изученного материала.

Вариант I

1. Точки E и F лежат соответственно на сторонах AD и BC параллелограмма ABCD; AE = ED, BF : FC = 4 : 3. Выразите вектор через векторы и .

2. Найдите  координаты  вектора ,  если  ,  (3; –2),
( –6; 2).

3. Боковые стороны прямоугольной трапеции равны 15 см и 17 см, средняя линия равна 6 см. Найдите основания трапеции.

Вариант II

1. Точки K и M лежат соответственно на сторонах AB и CD параллелограмма ABCD; AK = KB, CM : MD = 2 : 5. Выразите вектор через векторы и .

2. Найдите  координаты  вектора ,  если  ,  (–3; 6),
(2; –2).

3. Один из углов прямоугольной трапеции равен 120°, бóльшая боковая сторона  равна  20 см,  средняя  линия  равна  7 см.  Найдите  основания трапеции.

Вариант III

1. Точки P и O лежат соответственно на сторонах AD и BC параллелограмма ABCD; BP = PC, AO : OD = 3 : 2. Выразите вектор через векторы и .

2. Найдите  координаты  вектора  ,  если  ,  (6; –2),
(1; –2).

3. Основание и средняя линия прямоугольной трапеции равны соответственно 15 см и 12 см, а меньшая боковая сторона равна 8 см. Найдите вторую боковую сторону трапеции.

Вариант IV

1. Точки H и T лежат соответственно на сторонах и CD параллелограмма ABCD; CT = TD, AH : HB = 5 : 3. Выразите вектор через векторы и .

2. Найдите координаты вектора , если , (2; 3), (9; –9).

3. Средняя линия прямоугольной трапеции равна 9 см, а бóльшая боковая сторона равна 24 см. Один из углов, прилежащих к боковой стороне, в два раза больше другого. Найдите основания трапеции.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Контрольная работа № 2

Цель: проверить знания, умения и навыки учащихся по теме «Соотношения между сторонами и углами треугольника. Скалярное произведение векторов».

Вариант I

1. Найдите угол между лучом ОА и положительной полуосью ОХ, если А (–1; 3).

2. Решите треугольник АВС, если угол В = 30°, угол С = 105°, ВС =
= 3см.

3. Найдите косинус угла М треугольника KLМ,  если  К (1; 7), L (–2; 4), М (2; 0). Найдите косинусы углов K и L.

Вариант II

1. Найдите угол между лучом ОВ и положительной полуосью ОХ, если В (3; 3).

2. Решите треугольник ВСD,  если  угол  В = 45°;  угол D = 60°,  ВС =
=см.

3. Найдите  косинусы  углов  А, В и С треугольника АВС, если А (3; 9), В (0; 6), С (4; 2).

Вариант III

1. Найдите угол между лучом ОС и положительной полуосью ОХ, если С (; 1).

2. Решите треугольник СDЕ, если угол С = 60°, СD = 8 дм, СЕ = 5 дм.

3. Найдите косинус угла между векторами и , если = 60°.

Вариант IV

1. Найдите угол между лучом ОD и положительной полуосью ОХ, если D (–2; 2).

2. Решите треугольник DЕF, если = 5 м, DF = 8 м и ЕF = 4 м.

3. Найдите косинус угла между векторами и , если = 60°.

 

Контрольная работа № 3

Цели: проверить умение учащихся решать задачи по изученной теме; выявить пробелы в знаниях учащихся для последующего их устранения.

Вариант I

1. Периметр правильного треугольника, вписанного в окружность, равен 45 см. Найдите сторону правильного восьмиугольника, вписанного в ту же окружность.

2. Найдите площадь круга, если площадь вписанного в ограничивающую его окружность квадрата равна 72 дм2.

3. Найдите длину дуги окружности радиуса 3 см, если ее градусная мера равна 150°.

Вариант II

1. Периметр правильного шестиугольника, вписанного в окружность, равен 48 м. Найдите сторону квадрата, вписанного в ту же окружность.

2. Найдите длину окружности, если площадь вписанного в нее правильного шестиугольника равна 72 см2.

3. Найдите площадь кругового сектора, если градусная мера его дуги равна 120°, а радиус круга равен 12 см.

вариант III

1. Периметр квадрата, вписанного в окружность, равен 48 см. найдите сторону правильного пятиугольника, вписанного в ту же окружность.

2. Найдите площадь кольца, ограниченного двумя окружностями с общим центром и радиусами 3 см и 7 см.

3. Найдите площадь фигуры, ограниченной дугой окружности и стягивающей ее хордой, если длина хорды равна 4 м, а градусная мера дуги равна 60°.

Вариант IV

1. Периметр правильного пятиугольника, вписанного в окружность, равен 6 дм. Найдите сторону правильного треугольника, вписанного в ту же окружность.

2. Площадь кольца, ограниченного двумя окружностями с общим центром, равна 45π м2, а радиус меньшей окружности равен 3 м. Найдите радиус большей окружности.

3. Найдите площадь фигуры, ограниченной дугой окружности и стягивающей ее хордой, если длина хорды равна 2 см, а диаметр окружности равен 4 см.

 

Контрольная работа № 4

Цели: проверить знания, умения и навыки учащихся в решении задач по теме «Движения».

Вариант I

1. Дана трапеция АВСD. Постройте фигуру, на которую отображается эта трапеция при симметрии относительно прямой, содержащей боковую сторону АВ.

2. Две  окружности  с  центрами  О1 и О2, радиусы которых равны, пересекаются в точках М и N. Через точку М проведена прямая, параллельная О1О2 и пересекающая окружность с центром О2 в точке D. используя параллельный перенос, докажите, что четырехугольник О1МDО2 является параллелограммом.

Вариант II

1. Дана трапеция АВСD. Постройте фигуру, на которую отображается эта трапеция при симметрии относительно точки, являющейся серединой боковой стороны СD.

2. Дан  шестиугольник  А1А2А3А4А5А6.  Его  стороны  А1А2  и  А4А5, А2А3 и А5А6, А3А4 и А6А1 попарно равны и параллельны. Используя центральную симметрию, докажите, что диагонали А1А4, А2А5, А3А6 данного шестиугольника пересекаются в одной точке.

Вариант III

1. Дана трапеция АВСD с основаниями АD и ВС. Постройте фигуру, на которую отображается эта трапеция при повороте вокруг точки А на угол, равный углу DАВ, по часовой стрелке.

2. На одной стороне угла ХОY отложены отрезки ОА и ОВ, а на другой стороне – отрезки ОМ и ОN так, что ОМ = ОА, ОN = ОВ. Используя осевую симметрию, докажите, что точка пересечения отрезков МВ и АN лежит на биссектрисе угла ХОY.

Вариант IV

1. Дана трапеция АВСD с основаниями АD и ВС. Постройте фигуру, на которую отображается эта трапеция при параллельном переносе на вектор .

2. На биссектрисе внешнего угла при вершине С треугольника АВС взята точка М. Используя осевую симметрию, докажите, что

АС + СВ < АМ + МВ.

 

 

 

Информация о публикации
Загружено: 23 февраля
Просмотров: 9912
Скачиваний: 59
Зубарева Татьяна
Геометрия, 8 класс, Тесты

Проверьте знания своих учеников интересными заданиями

Красочные наградные дипломы и сертификаты для участников, свидетельства и благодарности каждому учителю, ежемесячный розыгрыш ценных призов!

Скачать материал